Search results

Search for "proximity effects" in Full Text gives 17 result(s) in Beilstein Journal of Nanotechnology.

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • ) can achieve minimum features sizes approaching 5 nm, but key drawbacks of using electrons (beam energies typically up to 100 keV) are the low sensitivity of the resists to these particles and also proximity effects (i.e., unintentional exposure of resist surrounding the targeted pixel) due to
  • area of the beam. These characteristics, together with a low yield of backscattered ions and therefore a very small amount of second-generation secondary electrons, enable high-resolution resist-based lithography and high-resolution ion beam-induced deposition with dramatically reduced proximity
  • effects. In the case of neon (also shown in Figure 1b), there is more scattering close to the surface, but the advantage for milling is a sputter yield that is about two orders of magnitude higher than that of helium at the same beam energy [17]. Early HIM work by Livengood et al. investigated the
PDF
Album
Review
Published 02 Jul 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • Figure 2f the corresponding local AE spectra acquired at the positions indicated with the correspondingly colored stars are plotted. For both precursors selective deposition was observed and no significant unintended co-deposition due to proximity effects [30][31] is visible in the SE micrographs. Local
  • of the square, which due to the lack of proximity effects are exposed to a lower overall electron dose than the center, are not fully covered. The AG process results in the formation of presumably pure crystalline iron [10][12], as evidenced in the blowup SE image in Figure 2c and the orange spectrum
  • is mainly determined by the AG process of the used precursor. For Fe(CO)5 the formation of high-purity crystalline iron deposits is feasible [10][11][12]. An advantage compared to EBID is that in EBISA the growth of the deposit relies on the AG process only. Therefore, undesired electron proximity
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • the thickness of the Fe layer to x = 4 nm the intermediate phase disappears. We attribute the intermediate state to proximity induced non-homogeneous superconductivity in the structure. Keywords: ferromagnet; iron (Fe); mixed state; neutron reflectometry; niobium (Nb); proximity effects
  • interaction between superconductivity and IEC is the Fe/Nb system. Proximity effects in Fe/Nb systems were extensively studied before [32][33][34][35][36]. The antiferromagnetic coupling of Fe layers through a Nb(y) spacer with y = (1.3 + 0.9 × n) nm (n = 0, 1, 2) was found in [37][38] by means of PNR. In the
PDF
Album
Full Research Paper
Published 21 Aug 2020

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • EBID for reliable nanofabrication has required several issues to be addressed, such as different kinds of proximity effects [58][59] leading to deposit broadening while patterning dense lines and dots, variation of deposit morphology as a function of the beam current and precursor flux [60], and the
PDF
Album
Review
Published 14 Nov 2018

Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition

  • Lukas Keller and
  • Michael Huth

Beilstein J. Nanotechnol. 2018, 9, 2581–2598, doi:10.3762/bjnano.9.240

Graphical Abstract
  • deposit, is nontrivial. To address this issue we developed several writing strategies and associated algorithms implemented in C++. Our pattern file generator handles different proximity effects and corrects for height-dependent precursor coverage. Several examples of successful 3D nanoarchitectures using
  • that the deposition events within one frame have to be sorted in a suitable way in order to reduce proximity effects (see section 2.3.2). As the deposition events (DEs) are processed, the corresponding state variables of edges and vertices are updated. The main loop is repeated until every vertex reads
  • how to go beyond the present approach. The working height correction is demonstrated in Figure 10, to appear later. 2.3.2 Proximity effects A DE consumes precursor molecules. Any close-by DE will be affected by this precursor consumption if it is located within the area of the previous DE or is
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • increasing electron dose is due to complex proximity effects like electron back scattering and electron forward scattering in the already built deposit [31][32]. In the depicted micrograph (Figure 1b), the actual iron deposits appear obviously darker than the substrate in SEM. The CVD experiment was carried
  • 0.25 nC to over ≈120 nm at 0.5 nC to ≈330 nm at 1.2 nC. The bright fringes around the dark spots in the left column of Figure 2 are attributed to proximity effects [32]. The size of the dark center and the bright features both increase with the applied electron dose as expected. The SEM micrographs in
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

  • Domagoj Belić,
  • Mostafa M. Shawrav,
  • Emmerich Bertagnolli and
  • Heinz D. Wanzenboeck

Beilstein J. Nanotechnol. 2017, 8, 2530–2543, doi:10.3762/bjnano.8.253

Graphical Abstract
  • set of Au NPs was deposited by FEBID (see Figure 4a). We should note that the composition of each NP in this set may slightly differ from the previously discussed stand-alone NPs, since proximity effects are known to come into play when a dense array of FEBID structures is deposited [77][78][79
  • Festkörperelektronik. It can be seen that the shape of the NPs was not fully uniform across the set: those NPs having more neighbouring NPs appear to have a slightly wider diameter than the more isolated NPs. This is strong evidence of FEBID proximity effects, where deposition of neighbouring NPs leaves some residue
  • content, which can be attributed to more pronounced proximity effects. Following the initial SEM investigation of pristine Au NPs, the samples were then exposed to O-plasma and examined again using the same SEM parameters. It was immediately evident that some material was indeed removed from the sample
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

  • Ragesh Kumar T P,
  • Sangeetha Hari,
  • Krishna K Damodaran,
  • Oddur Ingólfsson and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2017, 8, 2376–2388, doi:10.3762/bjnano.8.237

Graphical Abstract
  • indicated in the schematic by the red filled circles. The red arrows indicate the pillars causing the additional deposition. The number of red circles around the blue dots gives an impression of the expected broadening when proximity effects are present. In the absence of proximity effects, all dots are
  • ), pillar 8 (green arrow) and pillar 6 (green arrow). From the drawing in Figure 7a, it is seen that in the presence of proximity effects, the largest dot is expected to be dot 1, the second largest dots should be 2–5, and the smallest dots should be 6–9. Similarly, in Figure 7b areas where similar
PDF
Album
Full Research Paper
Published 10 Nov 2017

A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

  • Carlos Angulo Barrios and
  • Víctor Canalejas-Tejero

Beilstein J. Nanotechnol. 2017, 8, 1231–1237, doi:10.3762/bjnano.8.124

Graphical Abstract
  • and near-vertical or slightly positive leaning sidewalls. The latter is a consequence of proximity effects and the negative character of the resist. Then, a thin film of Al (thickness on the horizontal surface of 40 nm) is deposited by evaporation on the SU-8 nanopillar array (Figure 1b). The
PDF
Album
Full Research Paper
Published 08 Jun 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • . While standard patterning of the electron beam has resulted in complex 2D deposits of arbitrary shape, care must be taken as subtle proximity effects can be minimized or exacerbated in some electron beam [32], gas flux and patterning [33], and temperature regimes [34]. Moreover, while several examples
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction

  • Marcin Krajewski,
  • Wei Syuan Lin,
  • Hong Ming Lin,
  • Katarzyna Brzozka,
  • Sabina Lewinska,
  • Natalia Nedelko,
  • Anna Slawska-Waniewska,
  • Jolanta Borysiuk and
  • Dariusz Wasik

Beilstein J. Nanotechnol. 2015, 6, 1652–1660, doi:10.3762/bjnano.6.167

Graphical Abstract
  • simple model fitted for the cooling curves as well as the calculation error. Additionally, these differences may be caused by certain inhomogeneities, admixtures and proximity effects of the iron core with respect to paramagnetic iron oxide phases that have been formed during the oxidation reaction [12
PDF
Album
Full Research Paper
Published 29 Jul 2015

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • is thus a function of the deposit dimensions [26]. However, more detailed studies subsequently emphasized the role played by the halo and the effective magnetic shape in the coercive field of cobalt nanowires [27][28][29]. In brief, the halo structure around the main deposit (caused by proximity
  • effects in FEBID [30]) is an easy place for nucleation of domain walls (DWs) [31] starting the magnetization reversal of the nanowire, which gives rise to low coercive fields. This can be a source of troubles if one naively aims to control the coercive field of magnetic nanostructures by means of the
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • initial thicknesses (ca. 55, 90, 110, and 160 nm) and due to proximity effects [25] also increased widths (ca. 60, 75, 100, and 115 nm), respectively. Once fully purified, the wire-width reduction ceases with further irradiation time. For the wire purification of the smallest two wires one can envision an
PDF
Album
Full Research Paper
Published 08 Apr 2015

Fundamental edge broadening effects during focused electron beam induced nanosynthesis

  • Roland Schmied,
  • Jason D. Fowlkes,
  • Robert Winkler,
  • Phillip D. Rack and
  • Harald Plank

Beilstein J. Nanotechnol. 2015, 6, 462–471, doi:10.3762/bjnano.6.47

Graphical Abstract
  • using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy
  • more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution. Keywords: focused electron beam induced deposition; nanofabrication; platinum; simulation; Introduction Focused electron beam induced deposition (FEBID) has
  • broadening effects [44]. Both studies, however, used highly defined quasi-1D or quasi-2D structures as ideal test models and/or with the aim of unique lithography alternatives. For many applications, however, 3D deposits are required and thus more complex proximity effects emerge due to the extensive
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2015

High speed e-beam lithography for gold nanoarray fabrication and use in nanotechnology

  • Jorge Trasobares,
  • François Vaurette,
  • Marc François,
  • Hans Romijn,
  • Jean-Louis Codron,
  • Dominique Vuillaume,
  • Didier Théron and
  • Nicolas Clément

Beilstein J. Nanotechnol. 2014, 5, 1918–1925, doi:10.3762/bjnano.5.202

Graphical Abstract
  • an acceleration voltage of 100 keV, which reduces proximity effects around the dots, compared to lower voltages. We played with different beam currents to expose the nanodots (from 1 nA to 100 nA) as discussed in the paper. Then, the conventional resist development/e-beam Au evaporation (8 nm)/lift
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2014

Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

  • Florian Vollnhals,
  • Martin Drost,
  • Fan Tu,
  • Esther Carrasco,
  • Andreas Späth,
  • Rainer H. Fink,
  • Hans-Peter Steinrück and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2014, 5, 1175–1185, doi:10.3762/bjnano.5.129

Graphical Abstract
  • each individual structure was performed by successively sweeping the same area 10 times (rather than in a single sweep). This procedure enhances the uniformity of the fabricated structures, which otherwise shows a pronounced asymmetry due to proximity effects (see Figure S1 in Supporting Information
  • , a dose of 0.5 C/cm2 marks the start of observable proximity effects in the form of fringes around the structures. Closer inspection of the structures shows that, despite the same electron dose was applied per surface area, larger squares are brighter and more defined compared to the smaller ones
  • , which points to a deposition that is influenced by proximity effects [2]. In addition to the dose dependence, the growth time-dependent appearance of the structures was investigated. Figure 3 compares SEM images of square deposits fabricated by EBID and autocatalytic growth, using Co(CO)3NO as precursor
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2014

Magnetic interactions between nanoparticles

  • Steen Mørup,
  • Mikkel Fougt Hansen and
  • Cathrine Frandsen

Beilstein J. Nanotechnol. 2010, 1, 182–190, doi:10.3762/bjnano.1.22

Graphical Abstract
  • magnetic proximity effects is exchange bias, which manifests itself as a shift of the hysteresis curves obtained after field cooling of a ferromagnetic or ferrimagnetic material in contact with an antiferromagnetic material [1][2][3]. This was first observed in nanoparticles consisting of a core of
PDF
Album
Review
Published 28 Dec 2010
Other Beilstein-Institut Open Science Activities